
MIDDLEWARE TRENDS AND MARKET LEADERS 2011

A. Dworak, F. Ehm, W. Sliwinski, M. Sobczak, CERN, Geneva, Switzerland

Abstract
The Controls Middleware (CMW) project was launched

over ten years ago. Its main goal was to unify middleware

solutions used to operate CERN accelerators. An

important part of the project, the equipment access library

RDA, was based on CORBA, an unquestionable standard

at the time. RDA became an operational and critical part

of the infrastructure, yet the demanding run-time

environment revealed some shortcomings of the system.

Accumulation of fixes and workarounds led to

unnecessary complexity. RDA became difficult to

maintain and to extend. CORBA proved to be rather a

cumbersome product than a panacea. Fortunately, many

new transport frameworks appeared since then. They

boasted a better design and supported concepts that made

them easy to use. Willing to profit from the new libraries,

the CMW team updated user requirements and in their

terms investigated eventual CORBA substitutes. The

process consisted of several phases: a review of

middleware solutions belonging to different categories

(e.g. data-centric, object-, and message-oriented) and their

applicability to a communication model in RDA;

evaluation of several market recognized products and

promising start-ups; prototyping of typical

communication scenarios; testing the libraries against

exceptional situations and errors; verifying that

mandatory performance constraints were met. Thanks to

the performed investigation the team have selected a few

libraries that suit their needs better than CORBA. Further

prototyping will select the best candidate.

CERN MIDDLEWARE

The Controls Middleware (CMW) project was launched

at CERN over ten years ago. Its main goal was to unify

middleware solutions used to operate CERN accelerators.

Many software components were developed, among them

the Remote Device Access (RDA) [1] library. The main

responsibility of the library was to allow communication

with servers that operate hardware sensors and actuators.

The RDA design corresponds to the Accelerator Device

Model [1] in which devices, named entities in the control

system, can be controlled via properties. RDA implements

this model in a distributed environment with devices

residing in front-end servers that can run anywhere in the

controls network. It provides a location-independent and

reliable access to devices from control programs. By

invoking the device access methods, clients can read,

write, and subscribe to device property values. Currently

over 4000 servers (processes) are deployed, which

contain altogether almost 80,000 devices. In total the

system gives access to more than 2,000,000 properties/IO

points, on which clients may perform read/write

operations or monitor their values. [2]

Present Implementation

From the beginning there were certain requirements [3]

imposed on RDA that drove its implementation: relying

only on standards; interoperability with the already

existing communication infrastructure at CERN; portable

on LynxOS, Linux, Windows, HP-UX and AIX (only the

first three are still supported; LynxOS is being

eradicated); C/C++ and Java bindings for client/server

libraries; request-reply (read/write) and publish-subscribe

operations on device data. Each call type should provide

timeout settings and handling of communication errors.

Moreover, complementary, centrally managed services

like naming service, reservation service and access

control should be supplied. There were no precisely

defined constraints on communication latency or

throughput.

To facilitate development of the new library it was

decided to base it on an already existing, mature product.

CORBA [4] was a very popular middleware at that time

and fulfilled all the requirements. Thus it was chosen as

the communication layer. The C++ implementation was

based on omniORB (currently 4.1.2,) and the Java

implementation on JacORB (currently 2.2.4.) RDA

library wrapped CORBA, hiding all its complexities and

providing a simple to use API. The proposed solution was

widely accepted and became an operational and critical

part of the infrastructure.

Shortcomings of the System

Unfortunately, the demanding run-time environment

revealed a few shortcomings of RDA. Accumulation of

fixes and workarounds led to unnecessary complexity.

RDA became difficult to maintain and to extend. Desire

to deliver a better, more user-friendly solution led to a

general review of the system. Discussions with library

clients helped to identify several major issues, of which

the most troublesome are the ones directly correlated with

CORBA [5]. First, the CORBA standard is inherently

huge and complex. Libraries that try to fully implement it

have a major memory footprint. This is an issue

especially for older front-end computers. It is well

understood that RDA as a communication framework

uses only a small fraction of CORBA platform, but users

still have to pay the full run-time price. On the other hand,

many libraries (JacORB) do not implement the full set of

functionality. This leads to mismatches in behaviour of

Java and C++ bindings. Struggle to support

"asynchronous" operations on top of the synchronous

calls leads to unnecessary complexity in the library code

and design. Second, the way CORBA is used in RDA

leads to multiple data conversions between different

representations. This is both time consuming and leads to

higher memory usage. Third, CORBA is based on static

interface definition (IDL), which is difficult to manage

and evolve in large, complex environment as CERN.

Finally, the community supporting open-source

implementations is shrinking. There is a significant lack

of new releases from the major implementations

(JacORB), even if the major bugs have been identified

and fixed long time ago.

MIDDLEWARE EVALUATION

In a view of a 1-year accelerator shutdown at CERN,

starting end of 2012, there is a unique opportunity for

introducing a major new version of RDA, which should

solve all the limitations experienced with CORBA.

Therefore, CMW team launched the middleware review

process, aiming at choosing a new, modern middleware

library, to be used for the future version of RDA.

In addition to previously specified general requirements

we expect that the new transport library provides:

 Consistent implementation for C++ and Java.

 Easy to trace peer-to-peer communication with

reliable request/reply and publish/subscribe

messaging patterns.

 Synchronous and asynchronous communication

 Quality of Service (QoS): timeout management,

message queues and priorities, various thread

management policies.

 Small library size, low memory and resource usage.

 Certain performance characteristics (described later)

 No, or only a few, external dependencies that can be

linked with an application, preferably no need for

additional services (e.g. brokers, global servers,

daemons).

 Open source, with a license allowing to redistribute

our product further; good documentation, and

support from a large active community.

 Simple, easy to learn and use API.

The CMW team evaluated several market recognized

middleware products. A short description of each product

is provided below, including a general assessment and

results of tests. Detailed performance results and other

quantitative measurements are gathered and presented in

the next paragraph.

In line with the requirements the following middleware

standards and protocols were of no interest: XML-based

protocols (e.g. SOAP, XMPP), Stomp, P2P (FastTrack,

BitTorrent), MPI, MQTT (rsmb, Mosquitto) nor

WebSphere MQ.

The Current Solution: omniORB/JacORB

CORBA is an object-oriented communication platform

created by OMG. The standard defines wire protocol and

interface definition language (IDL), which is used to

specify object interfaces. It describes also mappings from

IDL to several languages. The complexity of

communication process is hidden from the user, who

cannot differentiate between a local and a remote call.

The standard and chosen implementations are well

documented. Unfortunately there are many shortcomings

described in the previous paragraph. Also, CORBA API

is old-fashioned and heavy, thus it has a very steep

learning curve and its community shrinks.

Evaluation of Ice

Ice [6] belongs to the object-oriented middleware

category. It is conceptually very similar to CORBA,

which is an advantage for those who already know it.

Product supports C++ and Java, and runs on Linux and

Windows. Compilation on LynxOS fails due to the use of

modern C++. It has a static type system and relies on

separate specification files to describe interfaces and data

structures. Apart from request-reply model, Ice provides

publish-subscribe event distribution service called

IceStorm. Full control over QoS and many tuning options

are available. Performance wise Ice satisfies our needs. It

uses a compact binary encoding that conserves bandwidth

and is very efficient to marshal and unmarshal.

Additionally protocol compression can be enabled. Sizes

of statically compiled library and of binaries of simple

ping-pong server and client indicate a heavy use of global

state that brings in the majority of Ice, no matter how

much of it is actually used. On the other hand, well

designed API, modern and flexible IDL, easy to use

language mappings, up-to-date documentation and a

detailed tutorial are a big plus. The library is distributed

under GPL license; sources are available for download.

Ice seems to be a very strong candidate due to its

industrial presence and number of existing deployments.

It also fulfils majority of our requirements.

Evaluation of Thrift

Thrift [7] belongs to the service-oriented middleware

category, which means that the central notion in this

system is that of remote services being accessed over the

network.

Library supports C++/Java and runs on

Linux/Windows. Compilation for LynxOS is problematic

due to the use of modern C++ features. Thrift has a static

type system and relies on separate specification files to

describe service interface and data structures. It supports

simple request-reply communication in synchronous and

asynchronous mode. It has a small memory footprint and

fulfils the performance needs, but it is still an immature

product with a buggy implementation. Tutorial on the

product webpage is empty and there is no documentation.

We decided to exclude Thrift from further

investigation.

Evaluation of ZeroMQ

 ZeroMQ [8] is a message-oriented middleware library,

which resembles the standard Berkeley sockets. Because

of supported communication patterns and various

transports like in-process, inter-process, TCP and

multicast it may be easily used as a concurrency

framework.

The core of library is written in C. Bindings for C++,

Java (through JNI) and many more languages are

supported. Library runs on most modern platforms. With

minor changes it is possible to run it on LynxOS system.

ZeroMQ has no type specification and does not know

anything about the data a user sends. For this reason it has

to be used with an external serializer. Because of

similarities to the BSD sockets the API is familiar and

easy to learn and use. In contrast to the BSD, ZeroMQ

API is more intuitive and user-friendly. Moreover, apart

from simple socket send/recv calls, many complex

communication patterns are implemented and ready to be

used (e.g. request-reply, publish-subscribe, workload

distribution). Users have full control over communication

policies and QoS (synchronous or asynchronous

communication, timeouts, high water marks). The library

has a small memory footprint. To achieve the best

possible performance it uses different protocols

depending on the peers location (TCP, PGM multicast,

IPC, inproc shared memory). Parallel protocols may be

easily changed so an eventual upgrade from unicast to

multicast is easy. The direct connection between the

system parts results also in reduced maintenance costs as

there is no need for brokers or daemons. A detailed

documentation and broad, easy to follow tutorial are

available on the product website. The project is under

LGPL license, with a large and active open source

community. If needed, full commercial support may be

obtained from iMatix, the authors of the product.

We consider ZeroMQ as one of the major candidates to

replace CORBA.

Evaluation of YAMI4

YAMI4 [9] belongs to the message-oriented

middleware category, in which communicating peers

exchange messages between each other. The distribution

is therefore explicit and seen in the user code.

Library supports C++/Java and runs on

Linux/Windows. With small changes it is possible to

compile it for LynxOS. YAMI4 has a dynamic type

specification. Data structures (messages) are created

dynamically without describing them with IDL. It is an

inherently asynchronous communication system with

support for request-reply and publish-subscribe over TCP.

QoS may be configured through message priorities and

timeouts. The library has a small memory footprint and,

as our tests show, even if considerably slower than the

statically typed products, it fulfils the performance needs.

It is an open-source project under GPL, with a thorough

documentation and a modern, intuitive API.

YAMI4 is already successfully used at CERN.

Unfortunately, community behind the product is small.

Evaluation of DDS Products

DDS [10] (Data Distribution Service) is an OMG’s

standard, targeting real-time distributed systems. It

belongs to the data-oriented middleware category, where

the communicating parties declare their interest in a topic

and the system takes care of delivery of only relevant

data.

There are five wire-interoperable implementations of

DDS. We evaluated the three most mature ones. All three

products support C++ and Java languages, however due to

use of modern C++ they do not support LynxOS out of

the box. DDS has a static type system and relies on

separate specification files to describe data structures.

Compatibility of the generated code with the code

generated from CORBA IDL may be accomplished.

Single-direction data flow is the most frequent use-case. It

is possible to set up request-reply communication but this

requires two symmetric channels. Because of the nature

of the channels, this approach is not applicable for CMW,

thus additional request-reply middleware would have to

be used in parallel. DDS is an asynchronous system that

supports many QoS settings, including message priorities.

A nice additional feature is Dynamic Discovery, which

allows a DDS application an automatic discovery and

connection with another DDS application. This feature

did not work for us. Products are well documented, but

the DDS API is neither easy to use nor compact. In fact,

the multitude of settings and concepts provided by the

standard is overwhelming and renders the products to be

cumbersome and difficult to use.

Evaluation of OpenSplice DDS

OpenSpliceDDS [11] is the only DDS implementation

that needs a separate daemon process on each node as

individual user processes do not use the network services

directly. The daemon is used for service discovery,

matching phase and for data transfer between nodes. Such

a solution creates additional complexity, which should be

avoided in CMW.

Evaluation of CoreDX DDS

CoreDX [12] is a small-footprint DDS implementation.

After the tests it turned out to be still an immature

product. Due to the licensing policy, further redistribution

to third parties would be problematic.

Evaluation of RTI DDS

RTI [13] provides the most mature and widely adopted

implementation of DDS. It is distributed with a number of

useful tools for system monitoring and administration. As

a research organization, CERN is eligible for a free of

charge IRAD license and even access to the source code

is available. On the other hand, we were not able to

connect clients and servers running on different machines.

The library size and simple binary programs are

significant.

Evaluation of AMQP family

AMQP [14] is a wire-level protocol used for

messaging. An AMQP system consists of a broker

responsible for message routing between the

communicating parties and a client library implementing

the protocol. It does not provide any data model - only

binary messages are supported. As AMQP is a broker

system, implementation of request-response is

cumbersome and almost two times slower than in a direct

mode. Only recently, the first stable version of the

protocol was released, but there is yet no product that

supports it. On the other hand, there are a few

implementations of the previous, noncompliant versions

of the protocol: Qpid v 0.10, OpenAMQ and RabbitMQ v

0.9, and SwiftMQ v 0.8. AMQP standard is still evolving,

however every new protocol version is not backward

compatible. Moreover, the specification is still work in

progress and there is no clear indication on its future

direction and support from industry [15]. Two products

were evaluated, Qpid and OpenAMQ, however taking

into account all outstanding issues around AMQP, we

decided to withdraw them from further investigations.

PERFORMANCE TESTS

The communication within CMW should be reliable

and fast. Analysing the current usage statistics, it was

estimated that the new transport over GbE network,

between a server on a new FEC (Inter Core 2 Duo,

1.5GHz, 1GB RAM, GbE) and a client running on a

similar machine should handle approximately:

1) 4000msg/sec req-rep calls, payload = 4B

2) 5msg/sec req-rep calls, payload = 10MB

3) publish 400 x 8B to 10 clients, in less than 100 msec

4) publish 30 x 8B to 10 clients, in less than 20 msec

For each candidate library all four scenarios were

tested. The most interesting results were obtained from

the test 1 (see Figure 1), where the price for the YAMI4

dynamic model and additional hop through Qpid broker

can be seen. Similar problem of IceStorm is revealed by

test 3 (see Figure 2). That test also unveiled the brilliant,

automatic message batching implemented in ZeroMQ.

Figure 1: Test 1, a client talking to a C++ server.

Figure 2: Test 3, pub-sub to a C++ server.

CONCLUSIONS

The paper presented several market recognized

middleware products, evaluated according to the

requirements of the CERN accelerator control system, as

well as considering the product maturity and ease of use.

Figure 3: Summary of evaluated middleware products.

The results are gathered in Figure 3. Three libraries

were qualified for further prototyping: Ice, ZeroMQ and

YAMI4. Based on prototyping CMW team will select and

adopt one of them for the future version of RDA.

REFERENCES

[1] N. Trofimov et al., “Remote Device Access in the

new CERN Accelerator Controls middleware”,

ICALEPCS 2001, San Jose, California, 2001.

[2] Z.Zaharieva et al., “Database Foundation for the

Configuration Management of the CERN Accelerator

Controls System”, ICALEPCS'11, Grenoble, France,

October 2011.

[3] V. Bagiollini et al., “CERN PS/SL Middleware

Project, User Requirements Document”, CERN Note

SL/99-16(CO), Issue 1 Revision 3, Geneva,

Switzerland, August 1999.

[4] OMG CORBA http://www.corba.org/

[5] M. Henning, “The rise and fall of CORBA”,

http://queue.acm.org/detail.cfm?id=1142044, 2006.

[6] ZeroC Ice: http://www.zeroc.com/

[7] Apache Thrift: http://thrift.apache.org/

[8] iMatix ZeroMQ : http://www.zeromq.org/

[9] Inspirel YAMI4: http://www.inspirel.com/yami4/

[10] OMG DDS: http://www.omgwiki.org/dds/

[11] OpenSplice: http://www.prismtech.com/opensplice

[12] CoreDX: http://www.twinoakscomputing.com/

[13] RTI: http://www.rti.com/

[14] AMQP: http://www.amqp.org/

[15] Pieter Hintjens, “What is wrong with AMQP”,

http://www.imatix.com/articles:whats-wrong-with-amqp

http://www.corba.org/
http://www.zeroc.com/
http://thrift.apache.org/
http://www.zeromq.org/
http://www.inspirel.com/yami4/
http://www.omgwiki.org/dds/
http://www.prismtech.com/opensplice
http://www.twinoakscomputing.com/
http://www.rti.com/
http://www.amqp.org/
http://www.imatix.com/articles:whats-wrong-with-amqp

